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Abstract

With data being called the ‘oil’ of the 21st century, it is becoming an

invaluable commodity. Data is primarily being used on a large scale by

industries worldwide to train extensive artificially intelligent systems.

This data, however, often contains user sensitive information which

causes privacy concerns. Furthemore, it is becoming increasingly ex-

pensive to train large scale models due to ever increasing number of

users. Federated Learning is a distributed machine learning paradigm

which addresses the issue of data privacy, as well as offsets the cost of

compute requirements to edge devices. Federated learning algorithms

help train machine learning models without sharing the user data with

the service providers. In this work, we focus on the application of user

privacy in federated recommender systems.
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Chapter 1

Introduction

Federated Learning is a distributed machine learning paradigm. It solves the

following two problems:

1.1 The Compute Problem

With the number of edge devices growing exponentially, it is becoming harder

to train large scale AI based services centrally on the server. Industry is there-

fore focussed on offsetting some of this compute cost on the edge devices. The

federated learning thus helps in the development of such services at a reduced

cost.

1.2 The User Privacy Problem

Protection of user privacy is of utmost concern in the world today. Data used to

train extensive AI based services is collected from the users, which often contains

sensitive user information. With the techniques in federated learning, one can

train AI models without requiring to extract user data from the edge devices.
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1.3 Application in Recommender Systems

Federated Learning is a boon to recommender systems, which are an integral part

of almost any service today. It helps companies to train complex recommender

systems at a reduce cost, and while following user privacy restrictions set by the

Government.
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Chapter 2

Recommender Systems

2.1 Introduction

Almost every user centric client services such as Netflix, Amazon, YouTube, etc

use algorithms to suggest content based on the user’s interest. These algorithms

are a part of recommender systems. These systems use user’s prior watch history,

item ratings, and information from adverts to predict content which the user

might like.

The first stage of this work was to explore recommender system algorithms

extensively and then use the gained knowledge for application in federated setting.

2.2 Types of recommender system types

Three primary types of approaches to recommender systems are described below:

2.2.1 Content-based Recommender Systems

Content based recommender systems learn item features to recommend them. It

creates user profile based on the items user has seen before. The user profile is

then used to predict items that the user might like in the future.
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2.2.2 Collaborative Recommender Systems

These recommender systems attempt to learn item features based on user inter-

ests. It is based on the hypothesis that users with similar tastes in the past will

have similar tastes in the future. Thus, item features are automatically learnt

from correlating user interests, and does not use information of the item sepa-

rately for training.

2.2.3 Hybrid Recommender Systems

As the name suggests, hybrid recommender systems utilize the strengths of

content-based and collaborative recommender systems. It uses item features and

user profiles to predict content. They give much more accurate results than

content-based or collaborative recommender systems.

2.3 Collaborative Filtering

In our work, we primarily focus on collaborative filtering for item recommendation

Zhang et al. [2014] . In this section, we discuss collaborative filtering algorithm.

Given a set of users U , a set of items V and a sparse matrix of ratings R, our

task is to predict the missing entries in R. The matrices U and V need to be

learnt to identify user and item features.

2.3.1 Low-Rank Matrix Factorization

A well known algorithm for collaborative filtering is the low-rank matrix factor-

ization. Let k be the latent feature dimension of item and user vectors. U is a

matrix of dimension N × k, where N is the number of users. V is a matrix of

dimension M × k, where M is the number of items. By definition,

R = UV T (2.1)

where R is the rating matrix of dimension N×M available from the dataset. Our

goal is to learn the matrices U and V , in order to learn user and item features.

Their product will then help predict the the missing user-rating pairs in R.

4



This can be modelled as a low-rank matrix factorization problem. However,

splitting large matrices can be computationally expensive using algebraic methods

such as singular value decomposition. We can instead model this problem as a

least squares optimization problem, where the loss

L = min
U∈RN×k,V ∈RM×k

||R− UV T ||2 (2.2)

can be minimized using the algorithms such as gradient descent. Regularization

terms can be added to prevent over-fitting.
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Chapter 3

Federated Learning

3.1 Introduction

Federated learning is a distributed machine learning paradigm. It commonly of a

network of edge devices and an server. It eliminates the need to transfer sensitive

user data to the server, thus reducing compute and network costs; and preserving

user privacy.

3.2 FedRec: Federated Recommender System

with Explicit Feedback

Lin et al. [2021] describe an architecture to implement collaborative filtering in a

federated setting.

In the previous chapter, we describe collaborative filtering as a low-rank ma-

trix factorization problem.

Given a set of users U , a set of items V and a sparse matrix of ratings R, our

task is to predict the missing entries in R. The matrices U and V need to be

learnt to identify user and item features.
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3.2.1 Storing user data and user embeddings

Now, to prevent user privacy leakage, the user data is stored on the user, along

with the user embeddings Ui. The item embedding matrix V is stored on the

server and is shared with the clients periodically.

3.2.2 Loss calculation and gradient flow

Algorithm 1 describes the overall flow of gradients through the network. Here is

a brief flow:

1. First, the user performs local training steps using the rating vector Ri, user

embedding Ui and item embedding matrix V .

2. Loss is computed. Gradients ∇Ui, ∇V are calculated.

3. ∇Ui is used to updated the user embedding. ∇V is sent to the server for

aggregation.

Refer Figure 3.1.

.  .  .  .  .  .  .  .  .
Client 1 Client 3 Client N

Global Aggregation Global Model

Client 2

Gradient Matrix upload

Item Matrix Download

Figure 3.1: FedRec Architecture
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3.2.3 Client Privacy Preservation

We can see that only item vector gradients, and no data or user embedding is

sent to the server. This preserves client privacy, as well as saves compute and

network resources to transfer large amounts of data to the server.

However, if a certain client has not rated certain movies, then the gradient

for those items will be 0. This might reveal certain user specific information.

For this, we randomly select a subset of items and fill them with some values

representative of user’s interests.

1. Averaging filling: Select a subset of non rated items, and assign them a

rating equal to that of average of rated items.

2. Hybrid filling: Use the user embedding Ui to predict the missing ratings

and then perform training to obtain gradients.

3.2.4 FedRec algorithm

We summarize the algorithm described by Lin et al. [2021] in Algorithm 1

Algorithm 1 FedRec Algorithm with Explicit Feedback on Server

1: Initialize Ui for each client i = 1, 2, 3...n on the client

2: Initialize Vj for each item j = 1, 2, 3...m on server

3: Initialize n (number of planning steps)

4: loop for each t = 1, 2, 3.... T:

5: loop for each client i:

6: Download feature matrix V from server

7: ∇Vi,∀j ← TrainClient(Ui, V, Ri), where Ri is local user rating data

8: Share gradient ∇Vi,j for each item j with server

9: end loop

10: loop for each item j:

11: ∇Vj ← WeightedAverage
i

(∇Vi,j)

12: Gradient update: Vj ← Vj − γ∇Vj

13: end loop

14: end loop

8



3.3 Experiments

FedRec was implemented on ML100k dataset containing 1000 users and 1700

movies. The algorithm was run for 400 epochs.

3.4 Results

FedRec gave an accuracy of 59.7% in 400 epochs on the dataset.

Figure 3.2: FedRec on ML100K dataset
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Chapter 4

Client Selection in Federated

Learning

4.1 Bottleneck in Federated Learning

While a large portion of the computation requirements are offset to edge devices,

the cost of communication remains a significant bottleneck in federated learning.

Often, large weight matrices or gradients need to be transferred over the network.

Several devices are often disconnected with the server, or have poor network

connectivity.

We thus explore client selection strategies, which involve selecting a subset of

client based on selection strategies. Our aim is to reduce communication costs,

while minimizing performance loss.

4.2 Client Aware Selection Strategies

We explore three strategies of client selection, which are as described in the

following subsections.

4.2.1 Sub-modular maximization

Balakrishnan et al. [2022] develop a techique to select a subset of clients which

best represent the entire client set using their communicated gradients.

10



Figure 4.1: Submodular function G

Figure 4.2: Subset generation algorithm by maximizing G

Figure 4.1 and 4.2, which describe the submodular function and the subset

generation algorithm, are taken from Balakrishnan et al. [2022]

4.2.2 Max-loss based

Jee Cho et al. [2022] suggest a client selection method to select a subset of top-

k clients with maximum loss. We implement this strategy by first selecting a

random subset of clients from the pool, and then choosing the top-k clients to

improve efficiency. Such an approach does not cause much variation in perfor-

mance, which was verified experimentally.

4.2.3 Clustering

In this approach, we cluster the clients using k-means based on their gradients

received, and pick the centers of the as the set of clients to be used in the training

set.

4.3 Experiments

We implemented the above three client selection strategies on FedRec based col-

laborative filtering. The models were trained on the ML100k MovieLens dataset.

We set subset size as 25, and collect all gradients from clients at intervals of 20

epochs. The training was run for a total of 400 epochs.
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4.4 Results

In figure 4.3, we can observe that choosing a subset of clients did not cause a

significant drop in performance of the model, while reducing the network cost of

training. The three selection strategies performed quite similar, with the cluster-

ing approach outperforming max loss and submodular maximization.

Figure 4.3: FedRec accuracy vs epochs for various selection strategies

12



Chapter 5

Deep Federated Recommender

Systems

Deep Neural Networks are machine learning techniques to learn complex distribu-

tions in data. With the assumption that the data is identically and independently

distributed(IID), deep neural networks find extensive applications. In this chap-

ter, we aim to apply deep neural network in a federated setting. Specifically, we

design two architectures for deep federated recommender systems.

5.1 Introducing Deep FedRec

Till now, we were considering linear mappings between user embedding U and

item embeddings V through dot product to predict ratings. Now, we aim to

apply non-linearity in the process to increase the capacity of our model.

However, the a significant challenge while training deep neural networks in a

federated setting is that distributed data often loses its IID property.

5.1.1 Client Model

As before, the item matrix V will be stored on the server and will be commu-

nicated to the client at regular intervals. The client will now maintain a deep

neural network locally which contains user embedding Ui in its weights.

13



The model takes as input both the item and user embedding to predict a

rating vector Rp
i . Loss will be computed against the locally stored Ri ground

truth vector, and the gradients for the neural network ∇Ui and ∇Vi will be

computed. ∇Ui is used to update the user model, whereas ∇Vi is sent to server

for aggregation. Refer figure 5.1.

Global Item
model

V

Accumulate
and

Aggregate

Model

Apply gradient

Figure 5.1: Deep FedRec Architecture

5.1.2 Neural Network Architecture

Refer Fig. 5.2 for the model architecture. The model takes as input the item

vector for the model, and outputs the predicted rating for the item.

5.1.3 Experiments

The model was implemented using PyTorch and Python.

Dataset The model was trained on the ML100K dataset from MovieLens. The

dataset contains ratings from 1000 users on 1700 movies.
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Dense
20x40

Dense
20x10

tan
activation

ratingDense
10x1

1x20
item vector

Figure 5.2: FedRec Client Model

Test-Train Split 30% of the rated items were masked from each user’s rating

vector to create the training vector. The original vector was used to calcu-

late the test accuracy at the end of each epoch.

User learning rate 0.01

Global learning rate lambda 0.01

Epochs 300

Optimizer Adam

Table 5.1: Training parameters for Deep FedRec

5.1.4 Results

Figure 5.3: Deep FedRec: Accuracy vs Epochs

We can see from Figure 5.3, Deep FedRec achieved an average accuracy of

81.3% on the MovieLens ML100K dataset, higher than that achieved by simple

15



FedRec. This clearly indicates that introducing non-linearity in the model proved

beneficial.

5.2 Prior Work: Deep Autoencoder based Col-

laborative Filtering

Introduced by Kuchaiev and Ginsburg [2017], deep autoencoder architecture for

recommender system aims at generating missing entries in a rating vector through

an autoencoder architecture.

5.2.1 Model Architecture

Fig 5.4 shows the model architecture of the deep autoencoder. The figure is taken

from the paper Kuchaiev and Ginsburg [2017]. Architecture is described below-

Encoder It consists of 3 layers of size (512, 512, 1024). The dimension of z is

1024 units. The input layer is of size m, which is equal to number of unique

items in dataset.

Decoder It consists of 2 layers of size (512, 512). The output layer is of size m.

Activations The authors use SELU activation function at the output of each

layer.

DropOut Layer The authors include a dropout layer at the output of the en-

coder for regularization. They set a high dropout value of 0.8 on their

benchmark model.

5.2.2 Loss Function

The authors use the Masked MSE loss function for training. The loss function

does not incorporate loss from those items in the output which were unrated in

the input(i.e, their rating value was 0).

MMSE =
mj ∗ (rpj − rj)

2∑j=m
j=0 mj

(5.1)
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where mj is the boolean whether item j is rated or not, rpj and rj are the

predicted and true rating for item j respectively.

5.2.3 Dense Refeeding

The input vector of the network is usually sparse as in our previous discussions,

since the user can practically only rate a small fraction of movies of all. The

authors thus use dense refeeding, which is the process of performing training

steps with the prediction vector of the network as a sample in the training set.

Dense refeeding steps-

1. Given input x, compute f(x) in forward pass.

2. Compute loss and perform backpropagation

3. Use f(x) as a training sample to compute f(f(x)).

4. Compute loss over f(f(x)) in which loss is propagated from all items and

perform backpropagation

5. Perform steps (3) and (4) again if necessary.

Figure 5.4: Deep Autoencoder Architecture. Ref- Kuchaiev and Ginsburg [2017]
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5.3 Introducing Deep Federated AutoEncoder

Recommender System

We took inspiration from the autoencode based architecture in Fig. 5.4 to employ

it in a federated setting.

5.3.1 User Model

Each user will now have a local autoencoder which will be used to predict ratings.

The local user model will only take one rating vector of dimension 1×m, which

is stored locally.

The model of our network, described below, is largely inspired from Kuchaiev

and Ginsburg [2017]

Encoder It consists of 3 layers of size (32, 64, 64). The dimension of z is 64

units. The input layer is of size m, which is equal to number of unique

items in dataset.

Decoder It consists of 2 layers of size (32, 32). The output layer is of size m.

Activations We use SELU activation function at the output of each layer here.

DropOut Layer We use a dropout rate of 0.5 for training.

5.3.2 Gradient flow architecture

The following describes the flow of the gradient through the client-server network.

See figure 5.5.

1. For each client i, given sparse local rating vector Ri, compute f(Ri) in

forward pass through the autoencoder. Apply dense re-feeding for 2 steps.

2. Loss is computed and gradients are generated.

3. For the decoder, ∇Wd are applied to the decoder locally.

4. The encoder gradients ∇We are sent to server for aggregation.

18



5. Encoder gradients are aggregated and ∇W global
e is sent back to the client

for updating the encoder..

Accumulate
and

Aggregate

Encoder

Decoder

Figure 5.5: Federated Deep Autoencoder Architecture

5.3.3 Loss Function

We use Masked MSE loss function from Eq. 5.1 here as before.

5.3.4 Experiments

The model was implemented using PyTorch and Python.

Dataset The model was trained on the ML100K dataset from MovieLens. The

dataset contains ratings from 1000 users on 1700 movies.

Test-Train Split 30% of the rated items were masked from each user’s rating

vector to create the training vector. The original vector was used to calcu-

late the test accuracy at the end of each epoch.
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Table 5.2 summarizes the training hyper-parameters.

Encoder dimensions 32× 64× 64

Decoder dimensions 32× 32

Dropout rate 0.5

Encoder learning rate 0.001

Decoder learning rate 0.001

Dense re-feeding 2

Epochs 45

Optimizer Adam

Table 5.2: Training parameters for Federated Deep Autoencoder

5.3.5 Results

Deep Federated Autoencoder achieved 93.8% accuracy on ML100k dataset, higher

than Deep FedRec and simple FedRec. Further, it converged much faster(in 45

epochs) as compared to over 300 epochs for previous approaches.

Figure 5.6: Federated Deep Autoencoder Architecture Accuracy vs Epochs
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Chapter 6

Conclusions

We thus show 4 progressively advanced techniques to train a federated recom-

mender system. We were able to achieve near state-of-art results while using a

federated approach.

By fixing the dataset at ML100k, we were able to fairly compare the per-

formance and efficiency of these algorithms. Federated AutoEncoder gave the

highest performance and efficiency of all. Deep FedRec was a close second.

The proposed approaches can be further advanced, such as using Transformers

architecture as the user model to train on much larger datasets.
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